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Manhattan lattice 0-point exponents from kinetic growth 
walks and exact results from the Nienhuis O(n) model 

T Prellberg and A L Owczarekt 
Department of Mathematics. The University of Melbourne, Parkville, mctoria 3052, Aushalia 

Received 8 November 1993 

Abstract Kinetic growth walks on the Manhattan lattice have previously been shown to 
be equivalent to the static problem of interacting self-avoiding walks on that lattice at the 8- 
temperature. Here, we illustrate how a complete set of exponents for the static problem, including 
the crossover exponent 4 and surface exponents at the ordinary and special tramition points, may 
be obtained from simulations of kinetic w&. In the process we find that 4 i~ 0.430 * 0.006 
which encompasses the conjectured value 317 a 0.42857 for the 8-point on an isotropic lattice. 
Our numerics m n h  a predicted set of exponents for both the bulk and surface uansitious in 
addition to results such as the exact intemal energy d the bulk m i t i o n .  

Fluthermme, we point out that a recently examined variant of the Nienhms O(n) model 
can be mapped onto 8-point w& an the Manhattan Wce which allows identification of the 
scaling dimensions for that problem and thereby provides a method for proving all the numerical 
conjectures. 

1. Introduction 

The collapse transition of a polymer in a dilute solution has been a focus of study in 
lattice statistical mechanics for several decades [l-31. The basis for most lattice models 
is the self-avoiding walk which possesses the excluded volume interaction important in 
physical polymers. To mimic the complex monomer-solvent interactions that cause the 
collapse transition, an energy is associated with (non-consecutive) nearest-neighbour sites 
on the walk. The conformations of polymers (configurations of self-avoiding walks) have 
been argued to be described by the statistics of the magnetic O(n) model in the limit 
n + 0 [MI. In recent years, progress has been made using the sophisticated techniques 
of conformal invariance [7] and the Coulomb gas [SI to predict the critical properties of 
polymer conformations [8,9] in two dimensions. The collapse transition has similarly been 
argued to be described by a aicritical O(n) model in the limit n + 0. Hence, there has been 
intense interest in lattice models that are related to O(n) models. One such model of loops 
on the honeycomb lattice with annealed vacancies, which we shall refer to as the Duplantier- 
Saleur (DS) model, has led to predictions for the relevant exponents at the 6'-temperature [lo]. 
This model has been the subject of many discussions 111-191 concerning its applicability 
to the @-point. When considered as a walk model, it possesses a particular subset of 
next-nearest-neighbour interactions as well as the canonical nearest-neighbour monomer- 
mononer attraction. This has led to doubts over the relevance, in the renormalization group 
sense, of these unusual interactions. While it is generally accepted that the values of the 
radius of gyration exponent, v ,  and the partition function exponent, y ,  most likely take on 
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their DS values at the real two-dimensional 0-point, the crossover exponent and the surface 
exponents have been more controversial. Recently, it has been shown [18,20] that the 
surface exponents were not, initially. properly identified and new conjectures are closer to 
numerical results, although not in full agreement [19,21]. Numerical estimates [13,19,21- 
241 of the crossover exponent, 6, have consistently failed to be close to the exact conjecture 
of 3/7 F;: 0.428 and have ranged from 0.48 to 0.90 [24,25]. It is usually acknowledged that 
this exponent is the most difficult to estimate [26]. 

The collapse transition in the DS model is related to the percolation of the vacancies and 
the temperature of the walk system maps to the percolation probability of the vacancies. 
This mapping is important in identifying the crossover exponent and at the 0-point the 
walks form the boundaries of the percolation clusters. An intimate relationship between 
@-point walks and percolation had already been noticed [27] prior to the description of the 
DS model. This relationship involved models of dynamic polymerization as intermediaries. 
These models (KGW [28-301) could be constructed to trap only by loop formation. This 
crucial property allows the identification of KGw on the honeycomb lattice [31] with the hulls 
of percolation clusters at threshold. The length of the walk is associated with the number of 
sites in the perimeter of the cluster. The percolation probability of the cluster controls the 
relative probability of turning left rather than right in the KGW. These Smart KGW were also 
found to map to the static problem of interacting self-avoiding walks on that lattice with a 
particular subset of next-nearest-neighbour interactions [27]. This connection between some 
static-walk problem and the percolation transition inspired Duplantier and Saleur to write 
down their model [lo] where, as mentioned above, the percolation probability was now 
associated with the walk-model temperature. In a parallel development, Zi examined the 
critical properties of percolation hulls I321 and confirmed a set of exponents for this problem. 
Saleur and Duplantier [33] obtained the exact fractal dimension of the hulls (related to l / u  
for walks) of percolation clusters by using Coulomb gas methods. 

The mapping between the KGW and &walks allows the identification of the size 
exponent, v ,  and the partition function exponent, y .  Studies of KGW have previously 
focused on these exponents. In this paper we shall show how to extract the thermal-crossover 
exponent and surface exponents for static-collapse problems from KGW. In particular, we 
shall concentrate on the case of the Manhattan lattice. The case of smart KGW on the 
honeycomb lattice is currently being examined [34]. We do this because KGW on the 
Manhattan lattice are by their nature ‘smart’ without the need for additional constraints. 
Therefore, they map onto a static problem with only nearest-neighbour interactions. 
Secondly, we shall show that the stqtic problem can be mapped precisely onto an exactly 
solvable vertex model from which all the exponents can be confirmed. These two approaches 
allow us to give a set of exact values for the standard exponents (see tables 1 and 2). 
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Table 1. Best estimates and exact conjectures for the bulk exponents for 8-point Manhaavl 
walks from KGW simulations. These are to be compared Io the values for the Duplantier and 
Saleur model. 

Exponent Y Y, Olr 4 
Estimates 0.571(2) 0.8575W) , 0.8575(15) 0.430(6) 
Exact 417 6fl 6fl 3fl 
DS Wdk.9 417 8i7 6fl 3fl 
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lsble 2. Best estimates and exact conjectures for the surface exponents. The exponent y11 is 
obtained via the Barber scaling relation. 

Estimates 0.429(2) -0.571(2) 1 4/7 0.382(3) 
Exact 3/7 -417 1 4/7 8/21 
DS walki 417 -417 8/7 4/7 8/21 

Much is already known about KGW on the Manhattan lattice. Bradley [35,36] has 
previously mapped this model onto the static walk problem with the partition function 

(ON 

where the sum is over all configurations PN of length N. The configurations are all 
self-avoiding loops allowed on the Manhattan lattice and have M ( ~ N )  nearest-neighbour 
contacts. This mapping holds a t  an inverse temperature of p = (log2)/2, where w = e6 is 
the Bolmnann weight associated with each nearest-neighbour contact. By also mapping to 
the problem of bond percolation, Bradley was able to identify that U = 4/7 and y = 6/7. 
This applies to the related models of Gunn et al [37], Row et al [38] and series work 
is in accord with these results [39]. One assumption in Bradley’s work is that KGW on 
the Manhattan lattice (MKGW) close with probability 1. This has recently been rigorously 
proved [40]. The m G W  are also related to the Ruijgok-Cohen Lorentz lattice gas [41,42], 
where extensive simulation has also confirmed Bradley’s exact results for U and y with a 
very high degee of precision. 

The collapse transition in the interacting self-avoiding walk problem is brought about 
by preferentially weighting nearest-neighbour contacts. We have stochastically enumerated 
KGW on the Manhattan lattice, up to lengths of lo6, keeping track of the average number of 
such contacts and their fluctuations. This allows the calculation of the internal energy and 
specific heat of the KGW over a range of lengths. This gives us the ability to find estimates 
of specific-heat exponent, 01, and crossover exponent, +4, (see [26] for instance) which are 
related to each other via a scaling relation. We have also enumerated KGW stochastically on 
a particulax half-plane formation with absorbing and reflecting boundary conditions, which 
we argue can be mapped to the static problem at the ordinary and special transition points, 
respectively. From these simulations we find values for the partition function exponents 

Ord and yp;d and the surfacecrossover exponent +4$. The special point exponents, yip and 
>:, are clear from the existence of the mapping and the Barber scaling relation. In fact, 
these surface exponents can all be derived from other arguments [43]. From this set of 
estimates exact conjechlres can be made which in turn lead to a set of scaling dimensions 
(table 3). 

Table 3. Relevant scaling dimensions for &point Manhattan walki 

Exponent Xh X I  xt, Xi;‘ x y  x;p x:p 

Manhattan value 1/4 114 514 I 2 0 ii3 
DS walks 0 114 514 1 2 0 Ii3 

A particular O(n) model suggested by Nienhuis j44.451 on the square lattice has recently 
been examined [46] and Bradley’s values for the exponents U and y found. This, we shall 
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show, is no coincidence. In fact, we show that Manhattan walks at @ = (log 2)/2 can be 
mapped precisely onto this loop model via the model of interacting trails on the L-lattice. 
The bulk scaling dimensions found there are in agreement with those in table 3. The surface 
scaling dimensions can be found in the O(n) model from a finitesize calculation, similar 
to that in [47]. 

We are now in a position to compare the scaling dimensions for the 0-point walks on 
the Manhattan lattice to those of the DS model. In terms of conformal field theory, both are 
non-reflection positive (non-unitary) theories with a central charge c = 0. In fact, the only 
difference between this set of scaling dimensions and those for the DS model is that in the DS 
model xh = 0. It seems that Manhattan walks pick up the ‘even’ bulk scaling dimensions, 
as in percolation 191 (Batchelor’s full set of bulk-scaling dimensions are precisely those of 
percolation). The relevant surface-scaling dimensions are identical. 

The paper is divided as follows. The definition of the model, the method of simulation 
and the techniques of analysis of the results are presented in section 2. The bulk and 
surface are treated separately inside this section. Furthermore, the special and ordinary 
point simulations are separated. The mapping to the O(n) model is explained and discussed 
further in section 3. Finally, a short set of conclusions is given in section 4. 
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2. Simulations 

2.1. The model 
Before we describe the simulations, we will define the model in more detail. We consider 
kinetically grown self-avoidmg walks on the Manhattan lattice. The Manhattan lattice is 
a directed square lattice with a network of alternating ‘one-way streets’, i.e. neighbouring 
parallel bonds have opposite direction. 

A KGW on this lattice is a walk where every step is chosen from the available ones 
with equal probability p .  For the Manhattan lattice, the possible number of steps is at 
most two, as each site has two exiting bonds, each of which is chosen with probability 
p = 1/2. However, if one of the bonds is prohibited (which corresponds to a nearest- 
neighbour interaction) the next step is naturally taken with probability 1. Moreover, due to 
the geometry of the lattice, this step will create a further nearest-neighbour interaction, so 
that in the corresponding interacting model w2 = 2, where w = exp(B) is the Boltzmann 
weight of a single nearest-neighbour interaction [36]. 

If we let the walk start at a ghost site in the middle of a bond, and terminate the walk 
when it re-enters the same bond, then the probability pc of a loop ‘p produced in this 
process is in direct relation to the Boltzmann weight of the same loop in a model with 
nearest-neighbour interactions of Boltzmann weight w = A, as we can write 

pF = 2-”2“2 (2) 
where N is the length of the loop and M denotes the number of nearest-neighbour 
interactions. Therefore, if we form the sum PN over all kinetically grown loops ‘pN of 
length N with their respective probabilities pqN 

PN = P P N  (3) 
‘PN 

and define the partition function of the interacting loop model as 

Zi ) (w)  = c (OM@”) ~~ (4) 
FN 
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we get equivalence at o2 = ~ 2  in the form 

P N  = Z - N z g ) ( & ) .  (5) 

Furthermore, the loop formation rate PN is clearly related to the the probability QN of an 
open walk of length N by 

(6) 
which in turn is related to the partition function Zp) for interacting walks at o2 = 2. 
Using our construction starting at a ghost site, we have a weight p ,  of walks which can be 
bounded by the corresponding B o l t ”  weight in an interacting model from both sides, as 
p ,  does not contain the information about interactions with the last site, because these only 
matter for the next step. On the other hand, as explained above, the occurrence of a blocked 
bond already accounts for a nearest-neighbour interaction at the next site. Therefore, p p  
overcounts the number M of interactions by at most one and undercounts it by at most two, 
so that 

PN = Q N  - QNi.1 

Zp’(&) - 2 - N Q ~ .  (7) 

This, together with equation (6) and the proven fact [40] that walks close with probability 
one, can be used to show that that the entropic exponents yt and U, are equal, 

Yr = fft (8) 

provided the probability of an open walk decays with a power law. Then, we can identify 

PN - poNn‘-2 and QN - poN”-’ (9) 

which by equation (6) implies the equality in (8). 

2.2. Method 

We have generated walk configurations up to a length of lo6 steps. The occupied sites 
of the walk are stored in a hash table [48], with the hash index being computed from 
the coordinates in order to facilitak~direct access to lattice sites via the lattice coordinates 
without having to store the whole lattice. The size of the hash table needs to exceed the 
maximal walk length only slightly, so that generation of a walk of length N (provided it 
does not trap) requires time O ( N )  and memory O ( N ) .  When a walk reaches the desired 
maximal length or gets trapped, a new one gets generated. This ensures the statistical 
independence of the walks sampled at fixed length. 

For the generation of random numbers we used the routine ranf 0 from the random 
number generator package ran1ib.c which utilizes base code from [49]. This code is 
the implementation of a mixed-linear congruential-generator algorithm [50]. This package 
has proved to he comparatively reliable [51], an important consideration in view of recent 
doubts about the quality of these generators within Monte Carlo simulations [52,531. In 
order to try to incorporate the statistical errors from the random number generator into our 
error estimation we produced independent runs of various lengths using different seeds. 

While the walks were generated, we sampled data at equidistantly spaced lengths, 
keeping track of the desired quantities including their fluctuations. Although the generated 
walks are independent of each other, this introduces highly correlated data (between different 
lengths), as every walk of a given length has contributed to all data sets of shorter length. We 
notice that this can be effectively overcome by calculating quantities using an exponential 
spacing, as we shall see below. 
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2.3. Bulk simulations 

Here, we have generated three independent runs of lo7 samples of length 104, IO6 samples 
of length 105 and 3.15 x lo5 samples of length 10‘. As an example, the generation of 
the 3.15 x lo5 samples of the longest walks (N = lo6) was completed on an IBM RISC 
6000/530 in about 85 CPU days. 

From the simulations on an unbounded Manhattan lattice we were able to compute 
estimations for the length-scale exponent ut and the entropic exponents yr and at. We 
estimate finite-size approximations U ~ , N  from the mean-square end-to-end distance ( R 2 ) ~  
which is assumed to scale as 

T Prellberg and A L Owczarek 

( R ’ ) N  - r ~ N 2 ”  (10) 

by forming 

(11) 

A graphical extrapolation versus 1/N towards infinity gives U, = 0.571(2). Here, as well 
as in all the other exponent estimations, there is clear evidence of the data correlation. 
However, as we have chosen exponential spacing of the data points for the finite-size 
estimators, the error due to the correlations seems to be smaller than the fluctuations due to 
statistical error in the single data points, and can therefore be neglected. We also point out 
that this extrapolated value differs little from the estimates of the last decade of the lengths 
sampled and hence, the final result will essentially be the same as if we had chosen 
instead of 1/N. 

For the entropic exponents at = yt we use the finitesize approximations 

and extrapolate towards infinity to get yf = 0.8575(15). 
The calculation of the internal energy, given by 

where M is the number of nearest-neighbour interactions and specific heat, given as 

of the KGW give us the ability to find estimates of the specific heat exponent, cd and the 
crossover exponent, 4, [26] which are related to each other via the scaling relation 

2 - E  = 114. (15) 

At the tricritical-lie point in static-collapse problems 1261 the internal energy UN of walks 
of length N behaves asymptotically as 

U N  - + U,N(‘-’w (16) 
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I I I -I 
1 02 1 03 1 0' 1 0' 1 On 
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Figure 1. Local estimates $N of the cmssover exponent $ are plotted against the length N 
from the internal energy data assuming U- = 213. The horizontal line corresponds to the e m t  
value $ = 3 17. 

while, if (Y < 0, the specific heat CN behaves as 

CN - c, -I- CoNub.  

By calculating both the internal energy and specific heat we can either obtain two estimates 
of $ using the scaling relation (15) or alternatively use the relation to check the accuracy 
of our results. 

Moreover, as we know the limiting value of the internal energy exactly, U, = 2/3 
(see section 3), we can use this knowledge to get a very accurate estimate for 4 using the 
finite-size estimations 

with errors computed from the respective fluctuations. 

of the fluctuations of the internal energy as the walks grow longer, 
We point out here that the convergence of the specific heat is equivalent to a decrease 

so that the error in the estimation of UN is inversely proportional to the product of sample 
size and walk length, i.e. it is inversely proportional to the run time T independently of 
the lengths of the created walks. Therefore, it is advantageous to create as large walks as 
possible in order to get beyond finite-size corrections-to-scaling and see the true asymptotic 
behaviour without the need for further extrapolation. 

The finite-size estimations for $ are shown in figure 1. Clearly, there are strong finite- 
size corrections present, and the asymptotic value of @ = 0.430(6) is reached well beyond 
lengths of lo3. In fact, if one tries to extrapolate from data for lengths up to IO', the value 
one obtains for @ is well above 0.5, in correspondence with estimations of @ from walks 
of lengths less than N = 300 [23]. The estimates of @ from the specific heat data are 
consistent with the internal energy data. 
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We do not use any further extrapolation methods, as we have simulated walks of such 
considerable length and cannot reasonably estimate with any precision the corrections-to- 
scaling. On the other hand, examination of figure 1 suggests that the estimates of 6, 
for example, from the longest walks, are close to their asymptotic value, while estimates 
from shorter walks clearly show a downward drift. The results of our estimation for all 
the bulk exponents are in table 1. Each result encompasses the predicted exact value. 
Assuming q5 = 3/7, we further get a consistency check by estimating U, = 0.66667(1). 
The application of this extxapolation method to the specific heat data is shown in figure 2, 
with both the actual data and the extrapolated values plotted. We estimate C, = 3.56(4). 

0 

1 0' 1 0s 1 0' 1 0' 1 00 

N 

FigurcZ Local estimates C-.N ofthe thermodynamic limit specific heat C, are plotted against 
the length N. Also, the values of the raw specific heat CN are plotted for comparison. The 
horizontal line corresponds to the value 3219. 

2.4. Suface simulations 

For the surface simulations we restrict the walk to grow on a half plane. The boundary is 
chosen such that the walk cannot return to its origin, as seen in figure 3. We are interested 
in simulating the kinetic problem equivalent to the static model with partition function 

where w = A, for various values of 0,. This is the partition function for walks that have 
one end attached to the surface in the half plane with a surface (inverse) temperature of 
logw,. The number of surface contacts of the half-plane configuration p~ is M s ( p ~ ) .  

We can simulate KGW corresponding to a range of surface interactions as follows. Fist, 
a walk begins at a special surface site and may walk only in a half plane as shown in 
figure 3. When a walk takes a step that leaves the surface into the other half of the lattice it 
is terminated and a new walk starts. By changing the probability of the walk taking this step 
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Figure 3. The boundary shape of the lattice used in the surface simulations. The broken part 
of the lattice indicates that part of the lattice unused by the walk. A walk can move along 
the suface freely and at~every second site can choose with probabdity 1 - p s  to cross the 
boundary and enter the broken section of the lattice. In this case the walk is terminated and a 
new configuration begun. For the ordinary point absorbing boundary conditions, with ps = 1 f2 ,  
are used while for the special pint reflecting boundiuy conditions, with pr = 1, are utilized. 
Every walk begins a! the site marked with a bullet. 

we change the weight of the corresponding configuration. As the sites adjacent to a surface 
bond can only be entered once, the probability ps of the walk not entering the surface is 
directly related to the surface interaction os. If the walk does not enter the surface, the next 
step will be along the surface, so that we have 

U,“ = 2p,. (21) 
Therefore, we are able to cover the full range from infinite repulsion os = O~to a maximal 
finite attraction 0 < os < &. The probability Q s , ~  of continuing configurations at 
particular length N is related to the partition function Zi ’ (w,  os) for walks with one end 
attached to the surface, via 

Q$,N - 2-NZ!’ ( f i ,  (22) 
similar to (7). Hence, estimates of the partition function exponent ~1 can be found via a 
formuia analogous to (12) as 

The exponent ~ 1 1  related to the partition function of walks with both ends attached to the 
surface can be found via the probability of closure 

P ~ . N  = Q ~ . N  - Q ~ . N + I  (24) 
provided Q s , ~  decays to zero as a power law (which holds at the ordinary point though not 
at the special point), as 

or the Barber scaling relation 

v + y = 2 Y l - Y l l .  
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2.4.1. The ordinarypoint. Here, we choose the kinetic growth probability ps = 1/2, which 
corresponds to os = 1, i.e. no interaction. As the surface increases the trapping probability, 
the generation of long walks is very inefficient. Therefore, we generated a sample of 106 
walks of lengths up to only 2 x lo4. To achieve this number of completed walks of that 
length (2 x lo4) we had to generate a total of 157 226 874 samples. 

Using finite-size estimators of the exponential decay of the trapping rate (see figure 4), 
we estimate yYd = 0.429(2), which covers the exact value ypd = 3/7. Furthermore, using 
the Barber scaling relation (26). this leads to an estimate of yfid = -0.571(2), which can 
be compared to the exact value y;;" = -411. 

T Prellberg and A L Owczarek 
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0,432 

0 2  G G0.430 
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0 i o  20 30  4 0  5 0  60  70x10'' 

N-'" 

Fi- 4. Local estimates &, of the closure exponent yp" are plotted against N-'P. The 
horizontal line correspands to the value yp" = 311. 

2.4.2. The special point. Here, we choose the kinetic growth probability p .  = 1, i.e. 
the surface reflects the walk completely, which corresponds to os = z/z and generate a 
sample of lo6 walks of lengths up to 2 x io5. In contrast to the ordinary point simulations, 
every attempted generation resulted in a walk of the maximum length, because there is no 
possibility of closure, and hence the Iengths possible were much greater. The generation of 
the lo6 samples of length 2 x 105 took approximately 24 days CPU time on an IBM RISC 
6000/560. 

As the walk is completely reflected and there is no loop formation by construction, 
this leads immediately to a value of y~ = 1, which is clearly different from yfd = 3/7. 
Therefore, os = -b is a candidate for the special point. In our simulations we now keep 
track of the number of surface contacts Ms, which is supposed to scale as 

with a surface crossover exponent & strictly between the values 0 (ordinary regime, walk 
not bound to the surface) and 1 (walk bound to the surface). We extract q5s using finite- 
size estimations (see figure s), obtaining a value of & = 0.382(3), which clearly indicates 
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0.405 

0.400 

0.375 I I I I I 
0 5 1 0  15 20 25x165 

p 2  

Figure 5. Lacal estimates &,v of the surface Crossover exponent q& are plotted against N-’12. 
The horizontal line corresponds to the exact value +% = 8/21 

that we are at the special point and hence the absorption transition (inverse) temperature is 
ps = (log2)/2. Moreover, it covers the exact value #s = 8/21 % 0.38095 for DS walks. 

We therefore conclude that y:’ = 1 and, by using the Barber scaling relation, that 
ys! = 4/7. One point worth mentioning is that here we again have very strong finite-size 
corrections-to-scaling which necessitate the use of very long walks. Data from shorter walks 
clearly lead to a value of & which is larger, which is reminiscent of other work using walks 
of lengths less than N = 300 [21]. 

3. Nienhuis O(n) loop model 

The model suggested by Nienhuis [44,45] and recently discussed by Batchelor [46], which 
we now show is equivalent to interacting walks on the Manhattan lattice at the 8-temperature, 
is a ninevertex loop model on the square lattice derived from the O(n) model. The nine 
allowed vertices are given in figure 6. The loop model is obtained from the n-vector 
spin model,[54] via a high-temperature expansion [ S I .  Only certain manifolds have been 
amenable to exact techniques and the point of most interest is known as the branch 0. The 
Boltzmann weights pj ( j  = 1, . . . ,9) are parametrized by two variables, U and w ,  as 

(28) 

and branch 0 is the point U = w = l/2. Bmause two Boltzmann weights are zero this 
manifold is more properly referred to as a seven-vertex model. The partition function is 
given 1461 as 

P I ,  . . . . p s  = ( U + %  v , ~ , w , w , o , o , u , w )  

G 

where mj is the number of vertices of type j and L is the number of loops of fugacity 
n. This is a member of the exactly solvable set of dilute loop models. The equivalent 
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O(n) spin model has the pj as the prefactors of different spin-spin interactions, with the 
number of spin components being n. This model is equivalent to a q-state Potts model with 
q = (n + 1)2 via a Temperley-Lieb equivalence 1561 and hence to a six-vertex model with 
crossing parameter A given as n = 2cosA - 1. The case of interest here is the limit of a 
single loop given by vanishing loop fugacity, n + 0. We note. immediately that this means 
the case of interest is equivalent to the q = 1 Potts model (A = a/3) which is well known 
[57] to be related to percolation. The model is also equivalent [44,46] to a manifold of the 
three-state nineteen-vertex model with four weights equal to zero and hence is denoted a 
fifteen-vertex model. As usual there is a related (spin-1) quantum spin chain [46] also. 
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1 2 3 5 
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A . ,  
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6 7 B 9 

Figure 6. The nine con6gurations of the O(n) model on the square kitice with the heavy bold 
lines representing sections of the loop. 

Figure 7. The six-vertex configurations of trails on the L-lattice with the heavy bold lines 
representing steps of the trail. 

To begin let us consider only U = w = 1/2, branch 0 and later briefly mention the 
case U + w = 1 (which is not a restriction on the model above). In the limit n = 0 one is 
essentially considering a single loop with the six vertices, as in figure 7, and each vertex has 
equal weight. Immediately one can see that these configurations are trails on the L-lattice 
with each step given.a fugacity 1/2 and each contact given a weight 2 in order that each 
vertex has equal weight. More explicitly, the loop model partition function can he expanded 
as 
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where GI is the set of configurations of a single loop. Let m = ma + mg be the number of 
contacts in a configuration. The total length of the walk N is given by 

N = mz + m3 +m4 + ms f 2m (3 1) 

which means that 

where cN(m) is the number of trails on the &-lattice with m contacts. The first term in this 
expansion (32) is then the generating function for trails on the L-lattice with each contact 
given a weight 2 at the critical monomer fugacity. The configurations involved are then 
simply.interacting trails on this lattice at an inverse temperature @ ~ l a i l S  = log2. Correlation 
functions of the O(n)'model then pick up this set of configurations and Boltzmann weights 
when n = 0. Interacting mils on the L-lattice can be mapped, via a bond-to-site mapping 
(the Manhattan lattice is the covering lattice of the L-lattice), to interacting walks on 
the Manhattan lattice [36].  The interacting-walk problem is at an inverse temperature of 
fl  = (log2)/2 since each contact of the trails leads to two nearest-neighbour contacts in 
the walk model. The free energy for this model is -@f = log2 as given by Bradley for 
@-walks and Batchelor for the equivalent six-vertex mode1 at A = H / 3 .  

One result that can be immediately deduced is that the internal energy of MSAW at the 
&point is U, = 2/3. This comes from the fact that the internal energy of IMSAW is twice 
the average value'of m / N  (the number of trail contacts) and this average is 113 by symmetry 
(there is a mapping of the loop model onto a two-colour dense loop model [46,58]). 

Batchelor [46] has identified the bulk scaling dimensions Xj of this O(n) model as 

Xj =.ZA(O, j) = ( j zh2  - 1)/2h(h + 1) (33)' 

where A is given by the Kac formula (for instance see [37]) 

with h related to the central charge as 

and 

h f 1 =IC/) . .  

.Hence, forn  = O  we have h =2and  c = O  with 

4 j 2  - 1 Xj = 12' 
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Now, this is precisely the set of scaling dimensions for percolation 191 and the 'even' subset 
of the scaling dimension (that is, X L  with L even) identified 191 for the DS model as 
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X L  = (L* - 1)/12. 

Now, if a scaling dimension satisfies x < 2 it is associated with a relevant scaling field 
and hence the relevant scaling dimensions associated with MSAW are exactly those given 
in table 3. 

Furthermore, the surface scaling dimensions for the DS walk model 1201 have been 
id en ti fi e d 

X; = L(L - 1)/6 (39) 

where if x i  < 1 it is associated with a relevant scaling field. The values of this formula, 
for L = 1,2 and 3, are precisely those we have found from the MKGW. (This one set of 
scaling dimensions seems to relate to both the ordinary and special points of the DS model.) 
A finitesize corrections calculation with appropriate boundary conditions on the Nienhuis 
O(0) model should demonstrate that this formula also holds for IMSAW. 

Finally, we mention that the case with U # w with U + w = 1 is pertinent to the 
Ruijgrok-Cohen mirror model 1411 with unequal concentrations of left and right scatters 
qefi  # c"ghr with total concentration ciefi + q g b f  =~ 1. Thii anisotropy is known not to 
effect the critical indices of the exactly solvable model and hence one need only consider 
the lattice gas of equal concentrations of scatterers, q,ft = cdsht = l/2, to study universal 
features. Note that the unequal concentrations of left and right scatterers does not change 
the global probability of turning left as opposed to right which is still 1/2 (as any path can 
be followed in reverse). 

Therefore, by this mapping of the seven-vertex Nienhuis model on the square lattice 
to MSAW, all the exponents found from MKGW can be confirmed by exact calculation. We 
note that this system is related to the Coulomb gas 181 with coupling g = 2/3. 

4. Conclusion 

In this paper we have presented techniques for extracting thermal and surface quantities for 
interacting static-walk problems from KGW simulations. We have stochastically enumerated 
KGW on the Manhattan lattice, up to lengths of lo6, which have previously been shown 
to map to the problem of interacting self-avoiding walks at an inverse temperature of 
p = (log2)/2. It is also related to the Ruijgrok-Cohen Lorentz lattice gas 1421. This 
temperature can be seen to be the &temperature. Our simulations allow the conjecture of 
a complete set of relevant exponents and hence scaling dimensions of the static problem. 
The crossover exponent @ = 3/7 is the same as for the Duplantier and Saleur model [ 101. 
However, it is intriguing to note that the Manhattan walk model contains only nearest- 
neighbour interactions. Also, a point that warrants attention is that most other numerical 
estimates of @ for collapse problems, including the canonical nearest-neighbour ISAW on 
a square lattice, rely on information from relatively short walks N c 300. Hence, it is 
interesting to examine the values found from our procedure for Manhattan walks. When the 
lengths of the simulated KGW are restricted to N c 300 the exponent estimates found are 
still reasonably close to the exact values for all the exponents except the crossover exponent. 
The crossover exponent can be estimated at a value near 0.50 and almost surely above 0.47, 



Manhattan lattice @point 1825 

one would believe, though with a strong drift. We point out that there is also a strong 
drift in the estimates of the surface-crossover exponent &. This may explain recent Monte 
Carlo results on the interacting self-avoiding walks system [Zl]. It is also of interest to 
note that only one of the relevant scaling dimensions differs between the two models. KGW 
have previously been shown to trace out the hulls of percolation clusters. In percolation the 
crossover between ( p  - p& the distance to the percolation transition;and the length of the 
hulls is controlled by the same crossover exponent. This indicates that the identification of 
the thermal scaling field in the walk problem to the percolation probability in the percolation 
problem is a valid one. 

Another intriguing result of this paper is that, in addition to the established fact that 
the &point of this model is simulated by a kinetic walk (with bulk-interactions given by 
‘reflection’ of the walk from itself), the special point is given by a kinetic walk interacting 
with a ‘reflecting’ surface: The critical inverse temperature for surface absorption has been 
shown to be at Bs = (log2)/2 for the Manhattan lattice &point. 

All these results are put in context since we have also shown that the static problem 
of walks on the Manhattan lattice at the @-temperature can be mapped onto a seven vertex 
Nienhuis O(n) model with n = 0 which in turn is related to the Potts model with q = 1. 
The q = 1 Potts model is itself related to percolation. Some of the bulk scaling dimensions 
have already been calculated via finite-size corrections and concur with our predictions from 
the kinetic growth model. It would be of interest to verify the surface exponents in a similar 
way. 
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