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Manhattan lattice ©-point exponents from Kinetic growth
walks and exact results from the Nienhuis O(n) model

T Prellberg and A L Owczarekt
Department of Mathematics, The University of Melbourne, Parkville, Victoria 3052, Australia

Received 8 November 1993

Abstract, Kinetic growth walks KGW) on the Manhattan lattice have previously been shown to
be equivalent to the static problem of interacting self-avoiding walks on that lattice at the &-
temperature. Here, we illustrate how a complete set of exponents for the static problem, including
the crossover exponent ¢ and surface exponents at the ordinary and special transition points, may
be obtained from simulations of kinetic walks. In the process we find that ¢ = 0.430 % 0.006
which encompasses the conjectured value 3/7 =2 0.42857 for the ¢-point on an isotropic lattice.
Qur numerics confirm a predicted set of exponents for both the bulk and surface transitions in
addition to results such as the exact internal energy at the bulk iransition.

Furthermore, we point out that a recently examined variant of the Nienhuis O(r) model
can be mapped onto §-point walks on the Manhattan lattice which atlows identification of the
scaling dimensions for that problem and thereby provides a method for proving all the nemerical
conjectures.

1. Introduction

The collapse transition of a polymer in a dilute solution has been a focus of study in
lattice statistical mechanics for several decades [1-3]. The basis for most lattice models
is the seif-avoiding walk which possesses the excluded volume interaction important in
physical polymers. To mimic the complex monomer—solvent interactions that cause the
collapse transition, an energy is associated with (non-consecutive) nearest-neighbour sites
on the walk. The conformations of polymers (configurations of self-avoiding walks) have
been argued to be described by the statistics of the magnetic O(r) model in the limit
n — 0 [4-6]. In recent years, progress has been made using the sophisticated techniques
of conformal invariance [7] and the Coulomb gas [8] to predict the critical properties of
polymer conformations [8, 9] in two dimensions. The collapse transition has similarly been
argued to be described by a tricritical O(n) model in the limit » —» 0. Hence, there has been
intense interest in lattice models that are related to O(z) models. One such model of loops
on the honeycomb lattice with annealed vacancies, which we shall refer to as the Duplantier—
Saleur (DS) model, has led to predictions for the relevant exponents at the #-temperature [10].
This model has been the subject of many discussions [11-19] concerning its applicability
to the #-point. When considered as a walk model, it possesses a particular subset of
next-nearest-neighbour interactions as well as the canonical nearest-neighbour monomer—
mononer attraction. This has led to doubts over the relevance, in the renormalization group
sense, of these unuseal interactions. While it is generally accepted that the values of the
radius of gyration exponent, 1, and the partition function exponent, y, most likely take on
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their DS values at the real two-dimensional 6-point, the crossover exponent and the surface
exponents have been more controversial. Recently, it has been shown [18,20] that the
surface exponents were not, initially, properly identified and new conjectures are closer to
numerical results, although not in full agreement [19,21]. Numerical estimates [13,19,21-
24] of the crossover exponent, ¢, have consistently failed to be close to the exact conjecture
of 3/7 ~ 0.428 and have ranged from 0.48 to 0.90 [24, 25]. It is usually acknowledged that
this exponent is the most difficult to estimate [26].

The collapse transition in the DS model is related to the percolation of the vacancies and
the temperature of the walk system maps to the percolation probability of the vacancies.
This mapping is important in identifying the crossover exponent and at the §-point the
walks form the boundaries of the percolation clusters. An intimate relationship between
B-point walks and percolation had already been noticed [27] prior to the description of the
DS model. This relationship involved modeis of dyramic polymerization as intermediaries.
These models (KGW [28-30]) could be constructed to trap only by loop formation. This
crucial property allows the identification of KGW on the honeycomb lattice [31] with the hulls
of percolation clusters at threshold. The length of the walk is associated with the number of
sites in the perimeter of the cluster. The percolation probability of the cluster controls the
relative probability of turning left rather than right in the KGW. These smart KGW were also
found to map to the static problem of interacting self-avoiding walks on that lattice with a
particular subset of next-nearest-neighbour interactions [27]. This connection between some
static-walk problem and the percolation transition inspired Duplantier and Saleur to write
down their model [10] where, as mentioned above, the percolation probability was now
associated with the walk-model temperature. In a parallel development, Ziff examined the
critical properties of percolation hulls [32] and confirmed a set of exponents for this problem.
Saleur and Duplantier [33] obtained the exact fractal dimension of the hulls (related to 1/v
for walks) of percolation clusters by using Coulomb gas methods.

The mapping between the KGW and &-walks allows the identification of the size
exponent, v, and the partition function exponent, ¥. Studies of KGW have previously
focused on these exponents. In this paper we shall show how to extract the thermal-crossover
exponent and surface exponents for static-collapse problems from KGW. In particular, we
shall concentrate on the case of the Manhattan lattice. The case of smart KGW on the
honeycomb lattice is currently being examined [34]. We do this because KGW on the
Manhattan lattice are by their nature ‘smart® without the need for additional constraints.
Therefore, they map onto a static problem with only rearest-neighbour interactions.
Secondly, we shall show that the static problem can be mapped precisely onto an exactly
solvable vertex model from which all the exponents can be confirmed. These two approaches
allow us to give a set of exact values for the standard exponents (see tables 1 and 2).

Table 1. Best estimates and exact conjecturas for the bulk exponents for 8-point Manhattan
walks from xGw simulations. These are to be compared to the values for the Duplantier and

Saleur model.

Exponent v b o ¢

Estimates 0.571(2) 0.8575(15) .,  0.8575(15) 0.4306) .
Exact 47 67 67 37

ps walks 47 817 a7 37
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Table 2. Best estimates and exact conjectures for the surface exponents. The exponent ¥y is
obtained via the Barber scaling relation.

Exponent  yf™ e e v ¢
Estimates  0.429Q) —05712) 1 47  0382(3)
Exact 317 —4/7 1 47 s

DS walks 47 - 81 47 8l

Much is already known about KGW on the Manhattan lattice. Bradley [35,36] has
previously mapped this model onto the static walk problem with the partition function

Zy(w) =Y MOV W
124

where the sum is over all configurations ¢y of length N. The configurations are all
self-avoiding loops allowed on the Manhattan lattice and have M(py) nearest-neighbour
contacts. This mapping holds at an inverse temperature of § = (log2)/2, where @ =¢f is
the Boltzmann weight associated with each nearest-neighbour contact. By also mapping to
the problem of bond percolation, Bradley was able to identify that » = 4/7 and y = 6/7.
This applies to the related models of Gunn et al [37], Roux et af [38] and series work
is in accord with these results [39]. One assumption in Bradley’s work is that KGW on
the Manhattan lattice (MKGW) close with probability 1. This has recently been rigorously
proved [40]. The MKGW are also related to the Ruijgrok—Cohen Lorentz lattice gas [41, 42},
where extensive simulation has also confirmed Bradley’s exact results for v and y with a
very high degree of precision.

The collapse transition in the interacting self-avoiding walk problem is brought about
by preferentially weighting nearest-neighbour contacts. We have stochastically enumerated
KGW on the Manhattan lattice, up to lengths of 10%, keeping track of the average number of
such contacts and their fluctuations. This allows the calculation of the internal energy and
specific heat of the KGW over a range of lengths. This gives us the ability to find estimates
of specific-heat exponent, o, and crossover exponent, ¢, (see [26] for instance) which are
related to each other via a scaling relation. We have also enumerated KGW stochastically on
a particular half-plane formation with absorbing and reflecting boundary conditions, which
we argue can be mapped to the static problem at the ordinary and special transition points,
respectively. From these simulations we find values for the partition function exponents
¥ and y9 and the surface-crossover exponent ¢;. The special point exponents, y;¥ and
¥y}, ate clear from the existence of the mapping and the Barber scaling relation. In fact,
these surface exponents can all be derived from other arguments [43). From this set of
estimates exact conjectures can be made which in turn lead to a set of scaling dimensions
(table 3).

Table 3. Relevant scaling dimensions for 8-point Manbattan watks,

Exponent X x P I L G
Manhattan value 1/4 1/4 5/4 1 2 ] i3
Ds walks 0 1/4 5i4 1 2 o i3

A particular O(r) model suggested by Nienhuis {44, 45] on the square lattice has recently
been examined [46] and Bradley’s values for the exponents v and ¥ found. This, we shall



1814 T Prellberg and A L Owezarek

show, is no coincidence. In fact, we show that Manhattan walks at 8 = (log2)/2 can be
mapped precisely onto this loop model via the model of interacting trails on the L-lattice.
The bulk scaling dimensions found there are in agreement with those in table 3. The surface
scaling dimensions can be found in the O{n) model from a finite-size calculation, similar
to that in [47].

We are now in a position to compare the scaling dimensions for the 8-point walks on
the Manhattan lattice to those of the DS model. In terms of conformal field theory, both are
non-reflection positive (non-unitary) theories with a central charge ¢ = 0. In fact, the only
difference between this set of scaling dimensions and those for the DS model is that in the DS
model xp = 0. It seems that Manhattan walks pick up the ‘even’ bulk scaling dimensions,
as in percolation {9 (Batchelor’s full set of bulk-scaling dimensions are precisely those of
percolation). The relevant surface-scaling dimensions are identical.

The paper is divided as follows. The definition of the model, the method of simulation
and the techniques of analysis of the results are presented in section 2. The bulk and
surface are treated separately inside this section. Furthermore, the special and ordinary
point simulations are separated. The mapping to the O(n) model is explained and discussed
further in section 3. Finally, a short set of conclusions is given in section 4.

2. Simulations

2.1. The model

Before we describe the simulations, we will define the model in more detail. We consider
kinetically grown self-avoiding walks on the Manhattan lattice. The Manhattan lattice is
a directed square lattice with a network of alternating ‘one-way streets’, ie. neighbouring
parallel bonds have opposite direction.

A KGW on this lattice is a walk where every step is chosen from the available ones
with equal probability p. For the Manhattan lattice, the possible number of steps is at
most two, as each site has two exiting bonds, each of which is chosen with probability
p = 1/2. However, if one of the bonds is prohibited (which corresponds to a nearest-
neighbour interaction) the next step is naturally taken with probability 1. Moreover, due to
the geometry of the lattice, this step will create 2 further nearest-neighbour interaction, so
that in the corresponding interacting model @’ = 2, where w = exp(8) is the Boltzmann
weight of a single nearest-neighbour interaction [36].

If we let the walk start at a ghost site in the middle of a bond, and terminate the walk
when it re-enters the same bond, then the probability p, of a loop ¢ produced in this
process is in direct relation to the Boltzmann weight of the same loop in a model with
nearest-neighbour interactions of Boltzmann weight w = +/2, as we can write

Do = 2—N2M/2 (2)

where & is the length of the loop and M denotes the number of nearest-neighbour
interactions. Therefore, if we form the sum Py over ali kinetically grown loops ¢y of
length N with their respective probabilities p,,,

Py=3" pey 3)
oN

and define the partition function of the interacting loop model as
Z (@) =3 wM® - @
N
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we get equivalence at @? =2 in the form
Py =2""z0/2). ' L ®

Furthermore, the loop formation rate Py is clearly related to the the probability Oy of an
open walk of length N by

Py = On — Qw1 . . ©)

which in turn is related to the partition function Z}{f’) for interacting walks at @* = 2.

" Using our construction starting at a ghost site, we have a weight p, of walks which can be
bounded by the corresponding Boltzmann weight in an interacting model from both sides, as
D does not contain the information about interactions with the last site, because these only
matter for the next step. On the other hand, as explained above, the occurrence of a blocked
bond already accounts for a nearest-neighbour interaction at the next site. Therefore, p,
overcounts the number M of interactions by at most one and undercounts it by at most two,
so that

ZW (W2 ~ 27Ny )]

This, together with equation (6) and the proven fact [40] that walks close with probablhty
one, can be used to show that that the entropic exponents y, and o, are equal,

V= @
provided the probability of an open walk decays with a power law. Then, we can identify

Py~pN®™®  and  Qy~ pN""' ©)
which by equation (6) implies the equality in (8).

2.2. Method

We have generated walk configurations up to a length of 10° steps. The occupied sites
of the walk are stored in a hash table [48], with the hash index being computed from
the coordinates in order to facilitate direct access to lattice sites via the lattice coordinates
without having to store the whole lattice. The size of the hash table needs to exceed the
maximal walk length only slightly, so that generation of a walk of length N (provided it
does not trap) requires time O(N) and memory G(N). When a walk reaches the desired
maximal length or gets trapped, a new one gets generated. This ensures the statistical
independence of the walks sampled at fixed length.

For the generation of random numbers we used the routine ranf () from the random
number generator package ranlib.c which utilizes base code from [49]. This code is
the implementation of a mixed-linear congruential-generator algorithm. [50]. This package
has proved to be comparatively reliable [31], an important consideration in view of recent
doubts about the quality of these generators within Monte Carlo simulations [52,53]. In
order to try to incorporate the statistical errors from the random number generator into our
error estimation we produced independent runs of various lengths using different seeds.

While the walks were generated, we sampled data at equidistantly spaced lengths,
keeping track of the desired quantities including their fiuctuations. Although the generated
walks are independent of each other, this introduces highly correlated data (between different
lengths), as every walk of a given length has contributed to all data sets of shorter length. We
notice that this can be effectively overcome by calculating quantities using an exponential
spacing, as we shall see below.
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2.3. Bulk simulations

Here, we have generated three independent runs of 107 samples of length 10*, 10° samples
of length 10° and 3.15 x 10° samples of length 10°. As an example, the generation of
the 3.15 x 10° samples of the longest walks (N = 10%) was completed on an IBM RISC
6000/530 in about 85 CPU days.

From the simulations on an unbounded Manhattan lattice we were able to compute
estimations for the length-scale exponent v, and the entropic exponents ¥, and ;. We
estimate finite-size approximations v, 5 from the mean-square end-to-end distance {R2)y
which is assumed to scale as

(R¥)y ~ roN>» (10)
by forming
{R*N
o =% R D

A graphical extrapolation versus 1/N towards infinity gives v, = 0.571(2). Here, as well
as in all the other exponent estimations, there is clear evidence of the data correlation.
However, as we have chosen exponential spacing of the data points for the finite-size
estimators, the error due to the correlations seems to be smaller than the fluctuations due to
statistical error in the single data points, and can therefore be neglected. We also point out
that this extrapolated value differs little from the estimates of the last decade of the lengths
sampled and hence, the final result will essentially be the same as if we had chosen ./T/N
instead of 1/N.
For the entropic exponents ¢, = 3, we use the finite-size approximations

0
1— yn = log, QN‘L - C12)

and extrapolate towards infinity to get ¥, = 0.8575(15).
The calculation of the internal energy, given by

M
Uy = SN_) , (13)

where M is the number of nearest-neighbour interactions and specific heat, given as

Cy=~—~ 21 (14)

of the XGW give us the ability to find estimates of the specific heat exponent, o and the
crossover exponent, ¢, [26] which are related to each other via the scaling relation

2—a=1/g. (15)

At the tricritical-like point in static-collapse problems {26] the internal energy Uy of walks
of length N behaves asymptotically as

Uy ~ U+ ugN(a_D‘ﬁ (16)
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Figure 1. Local estimates ¢y of the crossover exponent ¢ are plotted against the length N
from the internal energy data assuming Uy, = 2/3. The horizontal line corresponds to the exact
value ¢ =3/7.

while, if @ < 0, the specific heat Cy behaves as
Cy ~ Cop + coN¥. a7

By calculating both the internal energy and specific heat we can either obtain two estimates
of ¢ using the scaling relation {15) or alternatively use the relation to check the accuracy
of our results.

Moreover, as we know the limiting value of the internal energy exactly, Uy, = 2/3
(see section 3), we can use this knowledge to get a very accurate estimate for ¢ using the
finite-size estimations

2/3 — Uy
S 7

with errors computed from the respective fluctuations.
We point out here that the convergence of the specific heat is equivalent to a decrease
of the fluctuations of the internal energy as the walks grow longer,
Cy

o2 (Un) ~ 5 - (19)

so that the error in the estimation of Uy is inversely proportional to the product of sample
size and walk length, i.e. it is inversely proportional to the run time T independently of
the lengths of the created walks. Therefore, it is advantageous to create as large walks as
possible in order to get beyond finite-size corrections-to-scaling and see the true asymptotic
behaviour without the need for further extrapolation.

The finite-size estimations for ¢ are shown in figure 1. Clearly, there are strong finite-
size corrections present, and the asymptotic value of ¢ = 0.430(6) is reached well beyond
lengths of 10°. In fact, if one tries to extrapolate from data for lengths up to 102, the value
one obtains for ¢ is well above 0.5, in correspondence with estimations of ¢ from walks

-of lengths less than N = 300 [23]. The estimates of ¢ from the specific heat data are
consistent with the internal energy data.

(18)
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We do not use any further extrapolation methods, as we have simulated walks of such
considerable length and cannot reasonably estimate with any precision the corrections-to-
scaling. On the other hand, examination of figure 1 suggests that the estimates of ¢,
for example, from the longest walks, are close to their asymptotic value, while estimates
from shorter walks clearly show a downward drift. The results of our estimation for all
the bulk exponents are in table I. Each result encompasses the predicted exact value.
Assuming ¢ = 3/7, we further get a consistency check by estimating Uy, = 0.66667(1).
The application of this extrapolation method to the specific heat data is shown in figure 2,
with both the actual data and the extrapolated values plotted. We estimate Cop = 3.56(4).

4—
. ““|tl|llllllt11]llll|w "”[iullﬂ'i M“i“l ""tllmlﬂm
]
3 '
zB /
() 2 = / """"
1—
1¢° 10° 1¢* 10° 10°

N

Figure 2. Local estimates Coo,x of the thermodynamic limit specific heat Cp, ate plotted against
the length N. Also, the values of the raw specific heat Cy are plotied for comparison. The
horizontal line comesponds to the value 32/9,

2.4. Surface simulations

For the surface simulations we restrict the walk to grow on a half plane. The boundary is
chosen such that the walk cannot return to its origin, as seen in figure 3. We are interested
in simulating the kinetic problem equivalent to the static model with partition function

ZS) (0, w) = EwM(WN)w;us@’N) (20)
wN

where w = /2, for various values of e;. This is the partition function for walks that have
one end attached to the surface in the half plane with a surface (inverse) temperature of
log ;. The number of surface contacts of the half-plane configuration gy is M{pw).

We can simulate KGW cormresponding to a range of surface interactions as follows. First,
a walk begins at a special surface site and may walk only in a half plane as shown in
figure 3. When a walk takes a step that leaves the surface into the other half of the lattice it
is terminated and a new walk starts. By changing the probability of the walk taking this step
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Figure 3. The boundary shape of the laftice used in the sucface simulations. The broken part
of the lattice indicates that part of the lattice unused by the walk. A walk can move along
the surface freely and at every second site can choose with probability 1 — pg to cross the
boundary and enter the broken section of the lattice. In this case the walk is terminated and a
new configuration begun, For the ordinary point absorbing boundary conditions, with p; = 1/2,
are used while for the special point reflecting boundary conditions, with ps = 1, are utilized.
Every walk begins at the site marked with a bullet.

we change the weight of the corresponding configuration. As the sites adjacent to a surface
bond can only be entered once, the probability p, of the walk not entering the surface is
directly related to the surface interaction w;. If the walk does not enter the surface, the next
step will be along the surface, so that we have

w? = 2p,. (21)
Therefore, we are able to cover the full range from infinite repulsion ew; = 0.to a maximal
finite attraction 0 < w; < /2. The probability @ y of continuing configurations at

particular length & is related to the partition function Zﬂ)(w, w;) for walks with one end
attached to the surface, via

Qv ~2VZP W2, 2p0) (22)

similar to (7). Hence, estimates of the partition function exponent 3 can be found via a
formula analogous to (12) as '

1— py = log, 22, ' 23)
Qsnp
The exponent yq; related to the partition function of walks with both ends attached to the

surface can be found via the probability of closure

Pen = Osn — s n+1 (24)
provided @, y decays to zero as a power law (which holds at the ordinary peint though not
at the special point}, as

B,
1 —yu,n =log, P N]\;z (25)

or the Barber scaling relation
v+y =2y -y ' (26)
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2.4.1. The ordinary point. Here, we choose the kinetic growth probability p; = 1/2, which
corresponds to ws = 1, i.e. no interaction. As the surface increases the trapping probability,
the generation of long walks is very inefficient. Therefore, we gencrated a sample of 106
walks of lengths up to only 2 x 10%. To achieve this number of completed walks of that
length (2 % 10*) we had to generate a total of 157226 874 samples.

Using finite-size estimators of the exponential decay of the trapping rate (see figure 4),
we estimate ™ = 0.429(2), which covers the exact value ™ = 3/7. Furthermore, using
the Barber scaling relation (26), this leads to an estimate of ¥{f% = —0.571(2), which can
be compared to the exact value y® = —4/7.

0.434 -

0.432—
. |
o?:'O.430" ”“H) I ‘ ‘ ! l |

0.428 -

0.426 ~

I T I ! ¢ I I "
¢ 10 20 30 40 50 80 70x10
-1/2
N

Figure 4. Local estimates ¥{§ of the closure exponent ¥{™ are plotted against N~/2, The
horizontal line corresponds to the value yf™ =3/7.

2.4.2. The special point. Here, we chooss the kinetic growth probability p. = 1, Le.
the surface refiects the walk completely, which corresponds to ws = +/2 and generate a
sample of 10° walks of lengths up to 2 x 10°. In contrast to the ordinary point simulations,
every attempted generation resulted in a walk of the maximum length, because there is no
possibility of closure, and hence the lengths possible were much greater. The generation of
the 10° samples of length 2 x 10° took approximately 24 days CPU time on an IBM RISC
6000/560. .

As the walk is completely reflected and there is no loop formation by construction,
this leads immediately to a value of y1 = 1, which is clearly different from y™ = 3/7.
Therefore, w; = +/2 is a candidate for the special point. In our simulations we now keep
track of the number of surface contacts M;, which is supposed to scale as

Mgy ~ mo N% (27)

with a surface crossover exponent ¢ strictly between the values O (ordinary regime, walk
not bound to the surface) and 1 (walk bound to the surface), We extract ¢ using finite-
size estimations (see figure 5), obtaining a value of ¢; = 0.382(3), which clearly indicates
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Figure 5. Local estimates ¢,y of the surface crossover exponent ¢ are plotted against N—1/2,
The horizontal line corresponds to the exact value ¢g = 8/21.

that we are at the special point and hence the absorption transition (inverse) temperature is
Bs = (log 2)/2. Moreover, it covers the exact value ¢ = 8/21 ~ 0.38095 for DS walks.

We therefore conclude that ¥ = 1 and, by using the Barber scaling relation, that
;7 = 4/7. One point worth mentioning is that here we again have very strong finite-size
corrections-to-scaling which necessitate the use of very long walks. Data from shorter walks
clearly lead to a value of ¢ which is larger, which is reminiscent of other work using walks
of lengths less than N = 300 [21].

3. Nienhuis O(n) loop model

The model suggested by Nienhuis [44, 45] and recently discussed by Batchelor [46], which
we now show is equivalent to interacting walks on the Manhattan lattice at the 8-temperature,
is a nine-vertex loop model on the square lattice derived from the O(n) model. The nine
allowed vertices are given in figure 6. The loop model is obtained from the n-vector
spin model [54] via a high-temperature expansion [55]. Only certain manifolds have been
amenable to exact techniques and the point of most interest is known as the branch 0. The
Boltzmann weights p; (f =1,...,9) are parametrized by two variables, v and w, as

P pe=@+w,v,v,w,w00v,w ' (28)

and branch 0 is the point v = w = 1/2. Because two Boltzmann weights are zero this
manifold is more properly referred to as a seven-vertex model. The partition function is
given [46] as

Z=3 oM. pynt (29)
G

where m; is the number of vertices of type j and L is the number of loops of fugacity
n. This is a member of the exactly solvable set of dilute loop models. The equivalent
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O(n) spin model has the p; as the prefactors of different spin—spin interactions, with the
number of spin components being ». This model is equivalent to a g-state Potts model with
g = (n + 1)? via a Temperley-Lieb equivalence [56] and hence to a six-vertex model with
crossing parameter A given as n = 2cosA — 1. The case of interest here is the limit of 2
single loop given by vanishing loop fugacity, n — 0. We note immediately that this means
the case of interest is equivalent to the g = 1 Potts model (A = 7 /3) which is well known
[57] to be related to percolation. The madel is also equivalent [44, 46] to a manifold of the
three-state nineteen-vertex model with four weights equal to zero and hence is denoted a
fifteen-vertex model. As usual there is a related (spin-1) quantum spin chain [46] also.

> < /'\ hid
(X

Figure 6. The nine configurations of the O{n) model or the square Iattice with the heavy bold
lines representing sections of the loop.

v ~ - -
. . . »
. S . -
. ~ . -
' ~ ~ -
la ~ ~ .
. - - v
™ # 4 Pacs [ats
. » Py
. » - ~
Y v ’ .
- - - .
. 3 - S

X X

Figare 7. The six-vertex configurations of trails on the L-lattice with the heavy bold lines
representing steps of the trail.

L 7

To begin let us consider only v = w = 1/2, branch 0 and later briefly mention the
case U+ w = 1 (which is not a restriction on the model above). In the limit # = 0 one is
essentially considering a singie loop with the six vertices, as in figure 7, and each vertex has
equal weight, Immediately one can see that these configurations are trails on the L-laitice
with each step given a fugacity 1/2 and each contact given a weight 2 in order that each
vertex has equal weight. More explicitly, the loop model partition function can be expanded
as

Z=LgnY ()T 4 0 (30)
Gi
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where (1 is the set of configurations of a single loop. Let m = mg + mg be the number of
contacts in a configuration. The total length of the walk N is given by

N=my+ms+myg+ms+2m 310
which means that

(Z-D/n=3 G+ 0@
3} -

(32)
=2 Y D_cn(m)2” + Om)
N m

where cy(m) is the number of trails on the L-lattice with m contacts. The first term in this
expansion (32) is then the generating function for trails on the L-lattice with each contact
given a weight 2 at the critical monomer fugacity. The configurations involved are then
simply interacting trails on this lattice at an inverse temperature Spm; = log2. Correlation
functions of the O(n) model then pick up this set of configurations and Boltzmann weights
when n = 0. Interacting trails on the L-lattice can be mapped, via a bond-to-site mapping
(the Manhattan lattice is the covering latiice of the L-lattice), to interacting walks on
the Manhattan lattice [36]. The interacting-walk problem is at an inverse temperature of
B = (log2)/2 since each contact of the trails leads to two nearest-neighbour contacts in
the walk model. The free energy for this model is —8f = log2 as given by Bradley for
g-walks and Batchelor for the equivalent six-vertex model at A = 7/3. )
One result that can be immediately deduced is that the internal energy of IMSAW at the
B-point is U = 2/3. This comes from the fact that the internal energy of IMSAW is twice
the average value of m /N (the number of trail contacts) and this average is 1/3 by symmetry
(there is a mapping of the loop model onto a two-colour dense loop model {46, 58]).
Batchelor [46] has identified the bulk scaling dimensions X; of this O(n) model as

X; =2A00, j) = (j2% — 1)/2h(R + 1) (33)
where A is given by the Kac formula (for instance see {37])

[p(s + 1) —gh]* — 1

A, q) = T (34

with % related to the central charge as
6_

c=1-— m (35)
and

A4+l=a/r. _ (36)

. Hence, for n = 0 we have # = 2 and ¢ = 0 with
12 —
x =41 @7

12
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Now, this is precisely the set of scaling dimensions for percolation [9] and the ‘even’ subset
of the scaling dimension (that is, x; with L even) identified [9] for the D$ model as

xp = (L*=1)/12. (38)

Now, if a scaling dimension satisfies x < 2 it is associated with a relevant scaling field
and hence the relevant scaling dimensions associated with IMSAW are exactly those given
in table 3, ;

Furthermore, the surface scaling dimensions for the DS walk model [20] have been
identified

x5 =L(L —1)/6 (39)

where if x; < 1 it is associated with a relevant scaling field. The values of this formula,
for L = 1,2 and 3, are precisely those we have found from the MKGW. (This one set of
scaling dimensions seems to relate to both the ordinary and special points of the DS model.)
A finite-size corrections calculation with appropriate boundary conditions on the Nienhuis
O(0) mode] should demonstrate that this formula also holds for IMSAW.

Finally, we mention that the case with v % w with v 4w = 1 is pertinent to the
Ruijgrok-Cohen mirror model [41] with unequal concentrations of left and right scatters
Clefe 7 Crighe With total concentration Ciet + Cright = 1. This anisotropy is known not to
effect the critical indices of the exactly solvable model and hence one need only consider
the lattice gas of equal concentrations of scatterers, Cq = Crigne = 1/2, to study unijversal
features. Note that the unequal concentrations of left and right scatterers does not change
the global probability of turning left as opposed to right which is still 1/2 (as any path can
be followed in reverse).

Therefore, by this mapping of the seven-vertex Nienhuis model on the square lattice
to MsAw, all the exponents found from MKGW can be confirmed by exact calculation. We
note that this system is related to the Coulomb gas [8] with coupling g =2/3.

4. Conclusion

In this paper we have presented techniques for extracting thermal and surface quantities for
interacting static-walk problems from KGW simulations. We have stochastically enumerated
KGW on the Manhattan lattice, up to lengths of 10°, which have previously been shown
to map to the problem of interacting self-avoiding walks at an inverse temperature of
B = (log2)/2. It is also related to the Ruijgrok—Cohen Lorentz lattice pas [42]. This
teroperature can be seen to be the f-temperature, Qur simulations allow the conjecture of
a complete set of relevant exponents and hence scaling dimensions of the static problem.
The crossover exponent ¢ = 3/7 is the same as for the Duplantier and Saleur model [10].
However, it is intriguing to note that the Manhattan walk model contains only nearest-
neighbour interactions. Also, a point that warrants attention is that most other numerical
estimates of ¢ for collapse problems, including the canonical nearest-neighbour ISAW on
a square lattice, rely on information from relatively short walks N < 300. Hence, it is
interesting to examine the values found from our procedure for Manhattan walks. When the
lengths of the simulated KGW are restricted to N < 300 the exponent estimates found are
still reasonably close to the exact values for all the exponents except the crossover exponent.
The crossover exponent can be estimated at a value near 0.50 and almost surely above 0.47,
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one would believe, though with a strong drift. We point out that there is also a strong
drift in the estimates of the surface-crossover exponent ¢;. This may explain recent Monte
Carlo results on the interacting self-avoiding walks system [21]. It is also of interest to
note that only one of the relevant scaling dimensions differs between the two models. KGW
have previously been shown to trace out the hulls of percolation clusters. In percolation the
crossover between (p — p.}, the distance to the percolation transition, and the length of the
hulls is controlled by the same crossover exponent, This indicates that the identification of
the thermal scaling field in the walk problem to the percolation probability in the percolation
problem is a valid one. ’

Another intriguing result of this paper is that, in addition to the established fact that
the @-point of this model is simulated by a kinetic walk (with bulk-interactions given by
‘reflection” of the walk from itself), the special point is given by a kinetic walk interacting
with a ‘reflecting’ surface. The critical inverse temperature for surface absorption has been
" shown to be at 8; = (log2)/2 for the Manhattan lattice 8-point.

All these results are put in context since we have also shown that the static problem
of walks on the Manhattan lattice at the #-temperature can be mapped onto a seven vertex
Nienhuis Q) model with # = 0 which in turn is related to the Potts model with ¢ = 1.
The g = 1 Potts model is itself related to percolation. Some of the bulk scaling dimensions
have already been calculated via finite-size corrections and concur with our predictions from
the kinetic growth model. It would be of interest to verify the surface exponents in a similar
way. :
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